

Revised: February 16, 2017

Product Information

PMA™ Real-Time PCR Bacterial Viability Kit - Mycobacterium tuberculosis (groEL2)

Catalog Number: 31034

Unit Size: 1 kit (200 PCR reactions)

Kit Contents

Component	size
40019: PMA dye, 20 mM in H ₂ O	1 X 100 uL
99801: Forget-Me-Not™ qPCR Master Mix	2 X 1 mL
31042C: ROX Reference Dye	1 X 1 mL
31034A: groEL2 primer mix, 5 uM each primer For: 5'-CTAGGTCGGGACGGTGAGGCCAGG-3' Rev: 5'-CATTGCGAAGTGATTCCTCCGGAT-3'	1 X 400 uL

Storage and Handling

Store kit at -20 °C. Store PMA and Forget-Me-Not Master Mix protected from light. Protect PMA from light during use. Components are stable for at least 6 months when stored as recommended. Kit components are stable for several freeze/thaw cycles.

Spectral Properties

PMA: λ_{abs} = 464 nm (before photolysis); $\lambda_{abs}/\lambda_{em} = \sim 510/\sim 610$ nm (following photolysis and reaction with DNA/RNA)

EvaGreen: $\lambda_{abe} = 471 \text{ nm}$ (without DNA) $\lambda_{abs}/\lambda_{em} = 500/530 \text{ nm (with DNA)}$

Product Description

Viability-PCR kits are designed for selective detection of viable bacteria by real-time PCR. Each kit contains a viability dye (PMA or PMAxx™), Forget-Me-Not qPCR Master Mix, and PCR primers for detection of a specific strain of bacteria.

This kit contains primers for amplification within the Mycobacterium tuberculosis groEL2 gene, with reagents sufficient to treat 80 bacterial cultures and perform 200 PCR reactions. The number of samples that can be treated with PMA using the kit may vary depending on sample type.

PMA is a photoreactive DNA binding dye developed by Biotium. It is cell membrane-impermeable and so selectively binds to DNA from dead cells with compromised membrane integrity, while leaving DNA from viable cells intact. Upon photolysis, the dye forms a stable covalent bond, resulting in permanent DNA modification. PMA inhibits PCR amplification of modified DNA templates by a combination of removal of modified DNA during purification and inhibition of template amplification by DNA polymerases (1). Thus the dye is useful in the selective detection of viable pathogenic cells by real-time qPCR (Figure 1).

Forget-Me-Not qPCR Master Mix is a hot-start EvaGreen® dye-based master mix for use in real time PCR applications and DNA melt curve analysis. Forget-Me-Not master mix contains a low concentration of blue dye which allows you to see at a glance whether you forgot to add master mix to any of your tubes, so you can catch pipetting mistakes and avoid wasting time, reagents, and your precious DNA samples. It is formulated for qPCR using a fast cycling protocol, but can also be used for qPCR using regular cycling protocols. Forget-Me-Not Master ${\it Mix contains Cheetah}^{\rm TM} {\it Taq, Biotium's fast-activating chemically-modified hot-start}$ Tag polymerase, which is particularly suitable for fast PCR cycling protocols.

Mycobacterium tuberculosis and Mycobacterium bovis are pathogenic bacteria that can infect the lungs and causes the disease tuberculosis. PCR to detect Mycobacterium tuberculosis has been reported using the primers provided in the kit (2), and these primers have been validated at Biotium for real-time qPCR using EvaGreen Master Mixes (Figures 2-4). Note: groEL2 primers also amplify other mycobacteria species (2), but products may be distinguishable by melt curve analysis.

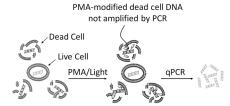


Figure 1. The cell membrane-impermeable PMA dye selectively and covalently modifies DNA from dead bacteria with compromised membranes. Subsequent PCR amplification of PMAmodified DNA templates is inhibited, allowing selective quantitation of viable bacteria.

Quick guide protocol

(Detailed protocol on following page)

- 1. Aliquot 400 uL cell culture or sample into tubes. If desired, prepare live and dead cell controls.
- 2. Working in dim light, add 25-50 uM PMA viability dye to tubes. Include no-dye controls.
- 3. Incubate for 10 min, rocking, protected from light.
- 4. Expose samples to light to crosslink dye to DNA. We recommend 15 min in the PMA-Lite.
- 5. Isolate DNA using a commercial kit or other protocol.
- 6. Set up qPCR reactions, using 2 uL of each isolated DNA sample as templates. Do not normalize the DNA concentrations.
- 7. Compare the amount of total and live-cell-derived DNA in your sample by calculating the dCt (dCt = Ct with viability dye - Ct without viability dye). See detailed protocol for more information.

References

- 1. Nocker A., et al. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Meth. 67(2), 310-320 (2006).
- 2. Pao CC., et al. Detection and identification of Mycobacterium tuberculosis by DNA amplification. J. Clin. Microbiol. 28(9), 1877-80 (1990).

Detailed protocol for treating bacteria with PMA for qPCR

The following is a protocol for treating cultured laboratory strains of bacteria with PMA. Treatment of complex biological or environmental samples such as feces or soil may require optimization of sample dilution for dye and light treatment.

- Inoculate an appropriate media broth with bacteria (volume is dependent on size of experiment).
- 2. Shake cultures at 200 RPM at 37°C overnight.
- 3. Continuing culturing bacteria until the OD₆₀₀ of the culture is approximately 1.
- 4. For dead cell control samples, heat inactivate bacteria at 95°C for 5 min. To confirm killing of bacteria, plate 10 uL of heat inactivated bacteria on the appropriate media plate, and 10 uL of a 1:100 dilution of control bacteria on another plate. Place the plate at 37°C and check for colony growth after 24-48 hours.
- 5. Pipette 400 uL aliquots of bacterial culture into clear microcentrifuge tubes.
- 6. Working quickly and in low light, thaw the 20 mM PMA or PMAxx stock and prepare a working stock by diluting to 5 mM in water. We recommend adding 4 uL of PMA working stock to 400 uL of sample for a final concentration of 50 uM. 25 uM PMAxx should be sufficient for most assays.
- Incubate tubes in the dark for 10 minutes at room temperature. Flick tubes occasionally to mix, or incubate on a rocker covered with aluminum foil.
- 8. Expose samples to light to cross-link PMA or PMAxx to DNA.
 - a. For best results, we recommend that the photo-crosslinking be carried out on Biotium's PMA-Lite LED Photolysis Device see next page for more information). 15 min exposure should be sufficient for complete PMA or PMAxx activation.
 - b. Commercial halogen lamps (>600 W) for home use have been employed for photoactivating PMA in some publications, though results have not been consistent due to inevitable variation in the set-up configurations. If you decide to use a halogen lamp, we recommend that you lay tubes on a block of ice set 20 cm from the light source. The ice block should be in a clear tray with a piece of aluminum foil under the clear tray to reflect the light upward. Set the lamp so that the light source is pointing directly downward onto the samples. Expose samples to light for 5-15 min.
- 9. Pellet cells by centrifuging at 5,000 x g for 10 minutes.
- Extract genomic DNA using a standard protocol or commercially available kit.
 Use an appropriate protocol or kit for DNA extraction from complex biological or environmental samples (e.g., feces or soil).
- Perform qPCR using the groEl2 primers included with this kit to detect M. tuberculosis. See reaction setup and fast cycling parameters below.
- 12. Data analysis: Compare the amount of total and live-cell-derived DNA in your sample by calculating the dCt (dCt = Ct with viability dye Ct without viability dye). The dCt of a control sample of killed cells can be calculated to determine the maximum inhibition that can be achieved by PMA in your sample, and the dCt of control live cells can be calculated to control for false negatives that may arise from dye getting into live cells.

Note 1: Part of the proposed mechanism of action of PMA is the removal of PMA-bound DNA from samples via precipitation; therefore the amount of input DNA in each sample should not be normalized between samples. Instead, PCR should be performed using equal volumes of gDNA eluate from each sample. For a positive control, 1 ng of live cell gDNA per reaction should be sufficient for achieving good signal. For gDNA extracted from bacterial cultures using a commercial extraction kit, 2 uL of eluted DNA can be used as a starting point for optimization.

PCR Reaction Setup

Add reaction components to each PCR tube or well according to the table below:

Reaction component	Amount per 20 uL reaction	Final concentration
2X Forget-Me-Not Master Mix	10 uL	1X
groEL2 primer mix, 5 uM	2 uL	0.5 uM each
Template	x uL See Notes 1&2	See Note 1
ROX	Optional	See Table 1
dH_2O	Add to 20 uL	

Note 2: Template volume should not exceed 10% of final reaction volume.

Fast-cycling parameters for groEL2 real-time PCR on Mycobacterium tuberculosis gDNA

Hold			
95 °C for 2-10 minutes (see Note 3)			
Cycling			
95 °C for 5 seconds			
55 °C for 30 seconds (acquire data)	Cycle 40 times		
Melt			
57 °C to 99 °C			

Note 3 - Activation of Cheetah $^{\text{TM}}$ Taq DNA Polymerase requires only 2 minutes at 95 $^{\circ}$ C, but genomic DNA can take longer to fully denature. If you observe high background fluorescence during intial amplification cycles, try increasing the hold time

Table 1. Recommended ROX Concentration for PCR Instruments

PCR Instrument	Recommended Rox Concentration	Amount of 10X ROX per 20 uL reaction
BioRad: iCycler, MyiQ, MiQ 2, iQ 5, CFX-96, CFX-384, MJ Opticon, Option2, Chromo4, MiniOpticon		
Qiagen: Rotor-Gene Q, Rotor-Gene3000, Rotor-Gene 6000		
Eppendorf: Mastercycler realplex	No ROX	None
Illumina: Eco RealTime PCR System		
Cepheid: SmartCyler		
Roche: LightCycler 480, LightCycler 2.0		
ABI: 7500, 7500 Fast, ViiA 7	Low ROX	Dilute ROX 1:100 with dH2O and add 3 uL diluted
Stratagene: MX4000P, MX3000P, MX3005P		ROX per 20 uL reaction.
ABI: 5700, 7000, 7300, 7700, 7900, 7900HT, 7900HT Fast, StepOne, StepOne plus	High ROX	Dilute ROX 1:10 with dH2O and add 3 uL ROX Reference Dye per 20 uL reaction.

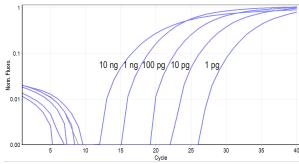


Figure 2. qPCR was performed to amplify a fragment of groEL2 from 10 ng, 1 ng, 100 pg, 10 pg, or 1 pg of M. tuberculosis gDNA (ATCC). The real-time PCR was performed on a RotorGeneQ (Qiagen).

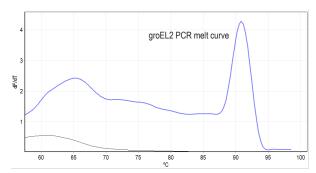


Figure 3. Melt curve analysis of the groEL2 real-time PCR product generated in Figure 1, from 1 ng of M. tuberculosis gDNA input.

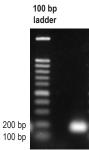


Figure 4. Reaction product from real-time PCR amplification of groEL2 (164 bp fragment) from 1 ng M. tuberculosis gDNA input. Biotium's 100 bp DNA ladder was run in the first lane. The 1% agarose 1X TBE gel was post-stained with 3X GelRed in water and imaged on a UVP GelDoc-iT using UV illumination and an ethidium bromide filter (3 second exposure).

Light sources for photoactivation

Biotium offers the PMA-Lite™ LED Photolysis Device for light-induced crosslinking of PMA to dsDNA. The PMA-Lite™ LED Photolysis Device is a thermallystable blue LED light source that provides even illumination to all samples. It contains a cooling unit to prevent sample overheating as well as several timer settings to allow for precisely timed light treatment.

Related Products

Catalog number	Product
E90002	PMA-Lite™ LED Photolysis Device
40013	PMA dye, 1 mg
40019	PMA dye, 20 mM in dH2O, 100 uL
40069	PMAxx™ dye, 20 mM in dH2O, 100 uL
31038	PMA Enhancer for Gram Negative Bacteria, 5X Solution
31033	PMA Real-Time PCR Bacterial Viability Kit - Salmonella enterica (invA)
31035	PMA Real-Time PCR Bacterial Viability Kit - Staphylococcus aureus (nuc)
31036	PMA Real-Time PCR Bacterial Viability Kit - Staphylococcus aureus (mecA)
31037	PMA Real-Time PCR Bacterial Viability Kit - E. coli O157:H7 (Z3276)
31050	PMA Real-Time PCR Bacterial Viability Kit - E. coli (uidA)
31051	PMA Real-Time PCR Bacterial Viability Kit - Listeria monocytogenes (hly)
31053	PMA Real-Time PCR Bacterial Viability Kit - Legionella pneumophila (mip)
31041-T	Forget-Me-Not™ qPCR Master Mix (100 rxn), 1 mL
31022	Ready-to-Use 1 kb DNA Ladder, 150 applications (1.5 mL)
31032	Ready-to-Use 100 bp DNA Ladder, 150 applications (1.5 mL)
41003	GelRed™ Nucleic Acid Gel Stain, 10,000X in water, 0.5 mL
32000-1	Live Bacterial Gram Stain Kit
32001	Bacterial Viability and Gram Stain Kit
30027	Viability/Cytotoxicity Assay Kit for Bacterial Live and Dead Cells

Please visit our website at www.biotium.com for information on our life science research products.

GelRed™ and its uses are covered by granted US patents.

EvaGreen® is a registered trademark of Biotium, Inc. EvaGreen® dye and applications are covered under granted and pending US and international patents. Cheetah™ Taq and its uses are covered by a granted US patent.

Forget-Me-Not™ and PMAxx™ are trademarks of Biotium, Inc. PMaxx™ and its uses are covered by granted and/or pending US patents.

Materials from Biotium are sold for research use only, and are not intended for food, drug, household, or cosmetic use.