

Oxazole Gold (SYBR® Gold), 10,000X in DMSO

Oxazole Gold, also known as SYBR® Gold, is the most sensitive fluorescent gel stain available for DNA and RNA.

Product attributes

Probe cellular localization	Mitochondria, Nucleus & cytoplasm
Assay type/options	DNA/RNA gel staining, No-wash staining, Real-time imaging
Cell permeability	Membrane permeant
Colors	Green
Excitation/Emission	496/539 nm (with DNA)
DNA/RNA dye	DNA & RNA dye

Product Description

Oxazole Gold, also known as SYBR® Gold, is the most sensitive fluorescent gel stain available for DNA and RNA, particularly for single-stranded oligos, and denaturing gels. The dye exhibits a >1000-fold fluorescent enhancement upon binding to nucleic acids and is 25-100 times more sensitive than ethidium bromide. Oxazole Gold may also be used for selective staining of mitochondrial nucleoids in live cells.

- Ultra sensitive staining: 25-100 times more sensitive than ethidium bromide
- Detect as little as 25 pg of DNA
- Suitable for live cell staining of nuclei and mitochondrial DNA
- $\lambda_{Ex}/\lambda_{Em}$ (with DNA) = 496/539 nm
- Supplied at 10,000x in DMSO

Oxazole Gold stained gels can be visualized using a blue light or UV transilluminator with a SYBR® Green or EtBr filter.

SYBR is a registered trademark of Thermo Fisher Scientific.

References

1. Anal Biochem, 268(2), 278(1999), [DOI: 10.1006/abio.1998.3067](https://doi.org/10.1006/abio.1998.3067)
2. PLoS ONE, 13(9), e0203956(2018), [DOI: 10.1371/journal.pone.0203956](https://doi.org/10.1371/journal.pone.0203956)
3. MRGTEM, 699(1-2), 1(2010), [DOI: 10.1016/j.mrgentox.2010.04.014](https://doi.org/10.1016/j.mrgentox.2010.04.014)