Support

Quick links
Frequently asked questions - categories
Ask a question
Contact Us
+1

CF™ Dyes for Super-Resolution Microscopy

superior brightness, photostability & photochemical switching properties
ideal for 3-D SIM, multi-color 3-D STORM, and other super-resolution and single molecule imaging techniques
Single-Label Secondary Antibody Conjugates for STORM

Recent publications comparing synthetic dyes for super-resolution imaging have shown CF™ dyes give the best performance for multiple methods. The superior brightness, photostability, and photochemical switching properties of certain CF™ dyes are ideal for 3-D SIM, multi-color 3-D STORM, and other super-resolution and single molecule imaging techniques.

As Lehmann and colleagues report in their publication in the Journal of Biophotonics:

“…the spectrally close dyes CF647 and CF680 comprise an optimal dye pair for spectral demixing-based, registration free multicolor dSTORM with low crosstalk. Combining this dye pair with the separately excited CF568 we performed 3-color dSTORM to image the relative nanoscale distribution of components of the endocytic machinery and the cytoskeleton.”

Single-Label Secondary Antibody Conjugates for STORM

Secondary antibodies with a low degree of labeling (DOL, or number of dye molecules per antibody molecule) have been reported to be optimal for STORM (Bittel et al. 2015). We now offer single-label secondary antibody conjugates with an average DOL of one for STORM applications.

Learn more about CF™ Dyes for Super-Resolution Imaging:

See super-resolution references
Download the Super-Resolution Imaging Flyer
Find out more about CF™ dyes

Comparison of microtubule imaging using conventional wide-field microscopy (left) with STORM (right) using CF™ dye conjugates.
CF™568 (left) produces better images of microtubules than Cy®3b (right) in 3-D STORM microscopy. Images courtesy of Sam Kenny and Professor Ke Xu, College of Chemistry, University of California, Berkeley.

References for CF™ Dyes in Super-Resolution Microscopy

DyeAbs/Em maximaExtinction coefficientSuper resolution applicationReferences
CF™405M408/45241,000SIMKraus, F. et al. Quantitative 3D structured illumination microscopy of nuclear structures. Nat Protoc 12, 1011-1028, doi:nprot.2017.020 [pii]
Markaki, Y. et al. (2013). Fluorescence In Situ Hybridization Applications for Super-Resolution 3D Structured Illumination Microscopy. Methods Mol Biol 950, 43-64.

Miron, E. et. al. (2016). In Vivo and In Situ Replication Labeling Methods for Super-resolution Structured Illumination Microscopy of Chromosome Territories and Chromatin Domains. in Mark C. Leake (ed.), Chromosome Architecture: Methods and Protocols, Methods in Molecular Biology, vol. 1431, 127-140.

Ohgomori, T. et al. (2017). Differential activation of neuronal and glial STAT3 in the spinal cord of the SOD1G93A mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 46, 2001-2014, doi:10.1111/ejn.13650
CF™488A490/51570,000STED, TIRFAngelov, B. & Angelova, A. (2017). Nanoscale clustering of the neurotrophin receptor TrkB revealed by super-resolution STED microscopy. Nanoscale 9, 9797-9804, doi:10.1039/c7nr03454g. (STED)

Zanetti-Domingues, L.C. et al. (2013). Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding. PLoS ONE 8(9): e74200. (TIRF)
CF™535ST535/56895,000STORMCollaborator communication; for more information contact techsupport@biotium.com.
CF™555555/565150,000STORMLehmann, M. et al. (2015). Novel organic dyes for multicolor localization-based super-resolution microscopy. J Biophotonics DOI 10.1002/jbio.201500119
CF™568562/583100,000SIM, STORM, TIRFGong, Y.-N. et al. (2017). Biological events and molecular signaling following MLKL activation during necroptosis. Cell Cycle, 1-13. doi:10.1080/15384101.2017.1371889 (STORM)

Gorur, A. et al. (2017). COPII-coated membranes function as transport carriers of intracellular procollagen I. J Cell Biol 216, 1745-1759. doi:10.1083/jcb.201702135 (STORM)

Heller, J. (2017). Exploring Nanoscale Organisation of Synapses with Super-Resolution Microscopy. OM&P 3, 48-58, doi:doi:10.20388/omp2017.002.0045 (STORM)

Jorgans, D.M. et al. (2017). Deep nuclear invaginations are linked to cytoskeletal filaments – integrated bioimaging of epithelial cells in 3D culture. J Cell Sci 2017 130: 177-189. doi: 10.1242/jcs.190967 (STORM)

Karanasios, E. et al. (2016). Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nature Communications 7: 12420. DOI: 10.1038/ncomms12420 (STORM)

Kraus, F. et al. (2017) Quantitative 3D structured illumination microscopy of nuclear structures. Nat Protoc 12, 1011-1028, doi:nprot.2017.020 [pii] (SIM)

Lehmann, M. et al. (2015). Novel organic dyes for multicolor localization-based super-resolution microscopy. J Biophotonics DOI 10.1002/jbio.201500119 (STORM)

Lim, A. et al. (2017). Two kinesins drive anterograde neuropeptide transport. Mol Biol Cell, doi:mbc.E16-12-0820 [pii] (SIM)

Turkowyd, B. et al. (2016). From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem DOI 10.1007/s00216-016-9781-8 (STORM)

Zanetti-Domingues, L.C. et al. (2013). Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding. PLoS ONE 8(9): e74200. (TIRF)

Zhang, M. et al. (2015). Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife 2015;10.7554/eLife.11205 (STORM)
CF™594ST593/614115,000STORMCollaborator communication; for more information contact techsupport@biotium.com. Please note: CF™594ST is a unique dye designed specifically for STORM. Our original CF™594 dye is not suitable for STORM.
CF™633630/650100,000FIONA, gSHRImP, TIRFBosch, P. J. et al. (2014). Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells. Biophys J 107, 803-814. (TIRF)

Kim, H. J., and Selvin, P. R. (2013). Fluorescence Imaging with One Nanometer Accuracy. SpringerReference Encyclopedia of Biophysics (FIONA)

Simonson, P. D., et al. (2011). Single-molecule-based super-resolution images in the presence of multiple fluorophores. Nano Lett 11, 5090-5096. DOI:10.1021/nl203560r (gSHRImP)


Zanetti-Domingues, L.C. et al. (2013). Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding. PLoS ONE 8(9): e74200. (TIRF)
CF™640R642/662105,000FLImP, SIM, TIRFBosch, P. J. et al. (2014). Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells. Biophys J 107, 803-814. (TIRF)

Loh, L. N. (2017). Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis. MBio 8, doi:mBio.02030-16 [pii] (SIM)

Martin-Fernandez, M. L. et al. (2013). A ‘pocket guide’ to total internal reflection fluorescence. J Microsc 252, 16-22. (TIRF)

Needham, S.R.,et al. (2015). Determining the geometry of oligomers of the human epidermal growth factor family on cells with <10 nm resolution. Biochem Soc Trans 43, 309-314. (FLImP)

Needham, S. R. et al. (2016). EGFR oligomerization organizes kinase-active dimers into competent signalling platforms. Nat Commun 7, 13307. doi:ncomms13307 (FLImP)

Zanetti-Domingues, L.C. et al. (2013). Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding. PLoS ONE 8(9): e74200. (TIRF)

Zanetti-Domingues, L. C. et al. (2015). Determining the geometry of oligomers of the human epidermal growth factor family on cells with 7 nm resolution. Prog Biophys Mol Biol 118, 139-152, doi:S0079-6107(15)00047-4 (FLImP)
CF™647650/665240,000STORMGong, Y.-N. et al. (2017). Biological events and molecular signaling following MLKL activation during necroptosis. Cell Cycle, 1-13. doi:10.1080/15384101.2017.1371889

Lehmann, M. et al. (2015). Novel organic dyes for multicolor localization-based super-resolution microscopy. J Biophotonics DOI 10.1002/jbio.201500119

Olivier, N. et al. (2013). Simple buffers for 3D STORM microscopy. Biomed Opt Express 4, 885-899.

Turkowyd, B. et al. (2016). From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem DOI 10.1007/s00216-016-9781-8
CF™660C667/685200,000STORMTurkowyd, B. et al. (2016). From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem DOI 10.1007/s00216-016-9781-8

Zhang, Z. et al. (2015). Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. Nature Methods doi:10.1038/nmeth.3528
CF™680681/698210,000STORMFrüh, S.M. et al. (2015). Molecular architecture of native fibronectin fibrils. Nature Communications 6, 7275.

Glebov, O. O. et al. (2017). Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function. Cell Rep 18, 2715-2728. doi:S2211-1247(17)30279-6 [pii]
Gorur, A. et al. (2017). COPII-coated membranes function as transport carriers of intracellular procollagen I. J Cell Biol 216, 1745-1759. doi:10.1083/jcb.201702135

Lehmann, M. et al. (2015). Novel organic dyes for multicolor localization-based super-resolution microscopy. J Biophotonics DOI 10.1002/jbio.201500119

Platonova, E. et al. (2015). A Simple Method for GFP- and RFP-based Dual Color Single-Molecule Localization Microscopy. ACS Chem. Biol.10(6),1411-1416.

Platonova, E. et al. (2015). Single-molecule microscopy of molecules tagged with GFP or mRFP derivatives in mammalian cells using nanobody binders. Methods doi: http://dx.doi.org/10.1016/j.ymeth.2015.06.018

Salvador-Gallego, R. et al. (2016). Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J 35, 389-401. doi:embj.201593384

Shrestha, R. L. et al. (2017). Aurora-B kinase pathway controls the lateral to end-on conversion of kinetochore-microtubule attachments in human cells. Nat Commun 8, 150. doi:10.1038/s41467-017-00209-z

Turkowyd, B. et al. (2016). From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem DOI 10.1007/s00216-016-9781-8

Winterflood, C.M. et al. (2015). Dual-Color 3D Superresolution Microscopy by Combined Spectral-Demixing and Biplane Imaging. Biophys J. 109, 3-6.

Zhang, Z. et al. (2015). Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. Nature Methods doi:10.1038/nmeth.3528
CF™680R680/701140,000 Single-molecule spectroscopy, STEDGörlitz, F. et al. (2014). A STED Microscope Designed for Routine Biomedical Applications. Progress Electromagnetics Res 147, 57-68. (STED)

König, I. et al. (2015). Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nature Methods doi:10.1038/nmeth.3475 (Single molecule spec)

Winter, F. R. et al. (2017) Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection. Sci Rep 7, 46492. doi:srep46492 [pii]10.1038/srep46492 (STED)
CF™750755/777250,000STORMCollaborator communication; for more information contact techsupport@biotium.com.

Donkey Anti-Goat IgG (H+L), highly cross-adsorbed, CF Dye Conjugates, Single Label for STORM

From: $48 Sizes: 50 uL, 500 uLCatalog #: 20829-50uL, - 20829-500uLView allHide

Donkey Anti-Mouse IgG (H+L), highly cross-adsorbed, CF Dye Conjugates, Single Label for STORM

From: $48 Sizes: 50 uL, 500 uLCatalog #: 20802-500uL, 20827-500uL, 20823-50uL, 20823-500uL, 20819-50uL, 20819-500uL, 20815-50uL, 20815-500uL, 20810-50uL, 20810-500uL, 20806-50uL, 20806-500uL, 20802-50uL, - 20827-50uLView allHide

Donkey Anti-Rabbit IgG (H+L), highly cross-adsorbed, CF Dye Conjugates, Single Label for STORM

From: $48 Sizes: 50 uL, 500 uLCatalog #: 20803-500uL, 20828-500uL, 20824-50uL, 20824-500uL, 20820-50uL, 20820-500uL, 20816-50uL, 20816-500uL, 20811-50uL, 20811-500uL, 20807-50uL, 20807-500uL, 20803-50uL, - 20828-50uLView allHide

Goat Anti-Mouse IgG (H+L), highly cross-adsorbed, CF Dye Conjugates, Single Label for STORM

From: $48 Sizes: 50 uL, 500 uLCatalog #: 20800-500uL, 20825-500uL, 20821-50uL, 20821-500uL, 20817-50uL, 20817-500uL, 20812-50uL, 20812-500uL, 20804-50uL, 20804-500uL, 20800-50uL, - 20825-50uLView allHide