Menu
biotium logo
Antibody Finder
Menu
Hero Image

Probes & Reagents For Neuroscience

Biotium offers a wide selection of synaptic vesicle dyes, neuronal tracers, dyes for amyloid and neurotoxicity, fluorescent indicators for calcium, other ions, membrane potential, and more.

High-Performance Single-Domain Antibodies

Reveal More with MiniMab™ SdAbs for Neuroscience

MiniMab™ single-domain antibodies (SdAbs) from Biotium are a next-generation labeling tool that leverage the power of SdAbs for superior performance in immunofluorescence and other applications. Their smaller ~15 kDa size relative to conventional antibodies enables deeper tissue penetration, faster staining times, and improved access to tightly packed or masked epitopes, making them ideal for high-resolution and super-resolution imaging. MiniMabs™ also offer minimal epitope-dye displacement, preserving spatial accuracy for techniques like STORM and other super-resolution methods. MiniMab™ SdAbs are available for a selection of neuroscience targets, including GFAP, VGLUT1, and SYT1. See our full selection of available targets below.

Alpacas produce three IgG subclasses. IgG1 has both heavy and light chains, while IgG2 and IgG3 are heavy chain only antibodies (HCAbs) lacking light chains and... See More

Best-in-Class CF® Dyes for IF & Super-Resolution Applications

MiniMab™ SdAbs are available are conjugated to Biotium’s industry-leading CF® Dyes, known for their exceptional brightness, photostability, and wide spectral coverage, including near-infrared options like CF®740. These dye conjugates allow for longer imaging sessions with minimal signal loss, producing consistently sharp and vivid results. With MiniMab™ CF® Dye conjugates, researchers gain a powerful and precise toolset for advancing imaging applications, from routine fluorescence microscopy to cutting-edge nanoscale visualization.

Features of MiniMab™ Single-Domain Antibodies

  • Advantages over IgG antibodies: Deeper tissue penetration, higher solubility and stability, and faster staining
  • Minimal epitope-dye displacement, perfect for super-resolution imaging
  • Specifically developed and optimized for immunofluorescence
  • Labeled with bright, photostable CF® Dyes, including near-infrared CF®740
  • Available with Biotium’s best-in-class CF® Dyes for STORM
PFA-fixed rat brain cryosection stained with MiniMab™ GFAP SdAb (VHH) CF®568 conjugate (orange) and NucSpot® 680/700 (magenta). Scale bar: 20 um.

Call for Collaborators

Biotium is seeking collaborators for the evaluation of MiniMabs™ in neuroscience & advanced imaging.

 

Please contact us at techsupport@biotium.com if you are interested in testing MiniMab™ single-domain antibodies (SdAbs) for applications focused on neuroscience research and/or advanced imaging. Single-chain variable fragments (scFv) may also be available upon request.

 

science, work and people concept - international group of happy scientists shaking hands in laboratory

View Our Full Selection of Neuroscience Antibodies

Biotium offers a broad selection of other monoclonal antibodies for neuroscience research. This includes antibody targets for brain tissue, glia, monocytes, neuroendocrine cells, neurons, and neutrophils. The antibodies are available purified, as biotin conjugates, or conjugated to Biotium’s bright and photostable CF® Dyes.

Frozen section of rat brain stained with CF®488A labeled mouse anti-NeuN clone A60 (neurons, green), polyclonal rabbit-anti-GFAP followed by CF®555 goat-anti-ra... See More

Browse Antibodies for Neuroscience by Target

Neurotoxins & Fluorescent Toxin-Based Receptor Probes

α-Bungarotoxin (BTX) & Bungarotoxin Conjugates

α-Bungarotoxin is a potent inhibitor of nicotinic acetylcholine receptors with sub-nanomolar affinity. Fluorescent conjugates of this protein can label motor endplates in tissue sections. We offer pure α-bungarotoxin and conjugates with CF® Dyes, which provide superior brightness and photostability compared to other commercially available dyes. Learn more about CF® Dyes.

Neuromuscular junction endplate in rat skeletal muscle cryosection stained with CF®594 α-bungarotoxin (red). Nuclei are stained with DAPI.

α-Bungarotoxin & Conjugates

Tetrodotoxin (TTX)

Tetrodotoxin (TTX) reversibly blocks excitable sodium channels and has been a widely used tool for studies of excitable membranes of nerve and muscle cells. Available lyophilized in citrate buffer, or citrate-free.

TTX, With or Without Citrate

Cholera Toxin Subunit B

Cholera toxin is the symptom-causing toxin produced by the bacteria Vibrio cholerae during cholera infection. The toxin is composed of two subunits, A and B. Subunit A is the toxic enzymatic subunit present in one copy per toxin. Cholera toxin subunit B (CT-B) is the receptor binding subunit that is found as a pentamer in each toxin and is relatively non-toxic, making it useful for cell biological studies.

CT-B has been used as a neuronal tracer and has also been shown to bind to GM1 gangliosides that are found in lipid rafts on the surface of mammalian cells. Therefore, fluorescently labeled conjugates of CT-B have been used as lipid raft markers and endocytic tracers for live imaging or on fixed cells. Cholera Toxin Subunit B is available with a wide selection of our bright and photostable CF® Dyes.

ConjugationEx/EmSizeCatalog No.Dye Features
CF®405M408/452 nm100 ug00068CF®405M Features
CF®488A490/515 nm100 ug00070CF®488A Features
CF®532527/558 nm100 ug00074CF®532 Features
CF®543541/560 nm100 ug00075CF®543 Features
CF®568562/583 nm100 ug00071CF®568 Features
CF®594593/614 nm100 ug00072CF®594 Features
CF®633630/650 nm100 ug00077CF®633 Features
CF®640R642/662 nm100 ug00073CF®640R Features
CF®647650/665 nm100 ug00069CF®647 Features
CF®660R663/682 nm100 ug00078CF®660R Features
CF®680R680/701 nm100 ug00079CF®680R Features
CF®740742/767 nm100 ug29127

Nerve Terminal Dyes

SynaptoRed™ & SynaptoGreen™

SynaptoGreen™ and SynaptoRed™ (formerly FM® dyes) are fluorescent styryl membrane dyes used to trace endocytic vesicles and monitor synaptic activity at neuromuscular junctions or synapses. They label synaptic vesicles in neurons in an activity-dependent manner and can also label endocytic vesicles in other cells.

Non-fluorescent in solution, they become highly fluorescent in membranes. Upon nerve stimulation, the dyes are internalized during endocytosis and released during exocytosis, allowing fluorescence changes to reflect synaptic activity. AM and HM fixable dyes enable post-staining fixation and immunostaining. See the table below for dye properties.

General structure of SynaptoGreen™ and SynaptoRed™ dyes.
General structure of AM fixable nerve terminal dyes.

Background Reducers & Nerve Terminal Staining Kits

Nerve terminal dyes can cause persistent background fluorescence from residual membrane staining. Biotium offers three agents to reduce this effect: ADVASEP-7, which forms a water soluble inclusion complex with SynaptoGreen™ C4 that can be removed by washing; SCAS, a fast-acting quencher that reduces background without washing; and sulforhodamine 101, which quenches SynaptoGreen™ via FRET. Available individually or in convenient kits.

Neurons in mouse dorsal root ganglia (DRG) labeled with AM1-43. Image courtesy of Dr. David Corey, Harvard Medical School. Also see See More

Properties of Nerve Terminal Dyes

Nerve Terminal Dyem*n*Fixable?SizeCatalog numberFeatures
SynaptGreen™ Dyes (Ex/Em ~480/660 nm in membranes)
SynaptoGreen™ C101No5 mg, 5 x 1 mg70042, 70043• Green nerve terminal probe
• Shortest tail for slowest on-rate & fastest off-rate
SynaptoGreen™ C2 (equivalent to FM®2-10)11No70044, 70045• Equivalent to FM®2-10
SynaptoGreen™ C321No70023, 70026• Green nerve terminal probe
SynaptoGreen™ C4 (equivalent to FM®1-43)31No70020, 70022• Equivalent to FM®1-43
SynaptoGreen™ C5 (equivalent to FM®1-84)41No70046, 70047• Equivalent to FM®1-84
SynaptoGreen™ C18 (equivalent to FM®3-25)171No70048, 70049• Equivalent to FM®3-25
AM1-4331Yes1 mg70024• Fixable version of SynaptoGreen C4
• Equivalent to FM®1-43FX
AM1-4441Yes70038• Improved fixability over AM1-43
AM2-1011Yes70036• Fixable analog of SynaptoGreen™ C2
AM3-25171Yes70051• Fixable far-red nerve terminal probe
HM1-4331Yes70053• Fixable red nerve terminal probe
SynaptoRed Dyes™ (Ex/Em ~510/750 nm in membranes)
SynaptoRed™ C103No5 mg, 5 x 1 mg70040, 70041• One carbon shorter than SynaptoRed™ C2
SynaptoRed™ C2 (equivalent to FM®4-64)13No70021, 70027• Equivalent to FM®4-64
SynaptoRed™ C2M** (equivalent to FM®5-95)13No70019, 70028• More water soluble than SynaptoRed™ C2
• Equivalent to FM®5-95
AM4-6413Yes1 mg70025• Fixable version of SynaptoRed™ C2
AM4-6533Yes70039• Fixable version of SynaptoRed™ C2
AM4-6643Yes70050• Fixable and spectrally identical to SynaptoRed™ C2
*m is the number of carbons in the lipophilic tail and n is the number of double bonds linking the two aromatic rings in the dye.
**The positively-charged end of SynaptoRed C2M is a trimethylammonium group.
FM is a registered trademark of Thermo Fisher Scientific.

Nerve Terminal Staining Kits

Nerve Terminal Staining KitNerve Terminal DyeBackground ReducerCatalog number
Nerve Terminal Staining Kit ISynaptoGreen™ C4 (5 x 1 mg )ADVASEP-7 (250 mg)70030
Nerve Terminal Staining Kit II (A)AM1-43 (1 mg)ADVASEP-7 (100 mg)70031
Nerve Terminal Staining Kit II (B)AM1-43 (1 mg)SCAS (100 mg)70031-1
Nerve Terminal Staining Kit IIISynaptoGreen™ C4 (5 x 1 mg)Sulforhodamine 101 (100 mg)70032
Nerve Terminal Staining Kit VSynaptoRed™ C2 (5 x 1 mg)ADVASEP-7 (250 mg)70034

Also see our selection of fast- and slow-responding potentiometric membrane potential dyes.

Anterograde & Retrograde Axonal Tracers

Retrograde Tracers

Hydroxystilbamidine (also called Fluoro-Gold™) has been used extensively as a retrograde tracer for neurons and also a histochemical stain. Fluoro-Gold™ is used for retrograde tracing and dendrite filling.

Cholera toxin subunit B binds GM1 ganglioside in lipid rafts, and is used as a retrograde neuronal tracer. Available with a wide selection of bright and photostable CF® Dyes. See Cholera Toxin Conjugates.

Retrograde & Anterograde Tracers

WGA is a glycoprotein-binding lectin that has been used for retrograde and anterograde neuronal tracing. We offer WGA CF® Dye conjugates with fluorescence from UV to near-IR, plus HRP. See WGA Conjugates.

Labeled dextran amine can be used for both retrograde and anterograde tracing. CF® Dye dextrans are anionic with an aldehyde-fixable free amine group, and are available with a wide selection of colors and a range of molecular weights. See Dextran Conjugates.

Biotin ethylenediamine is equivalent to Neurobiotin™, a useful anterograde and transneuronal tracer.

Cytosolic Tracers for Cell Morphology & Gap Junctions

Biotin Derivatives

Formaldehyde-fixable biocytin and biocytin hydrazide are widely used microinjectable polar tracers. Biocytin has been used as an anterograde tracer and gap junction probe. Biotin derivatives can be detected with labeled streptavidin or anti-biotin antibodies. Biotin ethylenediamine is equivalent to Neurobiotin™, a useful anterograde and transneuronal tracer. We also offer fluorescent CF® Dye biotin and biocytin conjugates.

Lucifer Yellow and Related Dyes

Lucifer Yellow is a classic cell-impermeant cytosolic and gap junction dye. We also offer Lucifer Yellow Cadaverine and Lucifer Yellow CH with aldehyde-fixable groups.

CF® Dye Hydrazides

Hydrazides are non-toxic, highly water-soluble membrane-impermeant tracers that can be used to fill cells by microinjection. See our large selection of bright, photostable CF® Dye hydrazides.

Figure 6. Cultured rat hippocampal neurons microinjected with CF®647 hydrazide (red) and stained with SynaptoGreen™ C4 (green). Image courtesy of Professor Guos... See More

Membrane-Permeant Cytosolic Stains

Calcein-AM is a membrane-permeant, non-fluorescent compound that can be loaded into cultured cells by incubation. Once inside the cytoplasm, it is hydrolyzed inside viable cells to release the green fluorescent, membrane impermeant dye calcein, which fills the entire cell. Calcein-AM can be used to assess cell viability, and for short term cytoplasmic labeling.

ViaFluor® SE Cell Proliferation Dyes are membrane-permeant compounds that are hydrolyzed in the cytoplasm to release amine-reactive fluorescent dyes. The staining fills the entire cell, is stable for several days to weeks, and can withstand fixation and permeabilization. Available with blue and green fluorescence.

Cytosolic Tracers & Fluid Phase Markers

ProductFeatures
CF® Hydrazides• Microinjectable, fixable fluorescent tracers
• Wide selection of bright & photostable CF® dyes
Calcein • Water soluble green fluorescent tracer for microinjection
Calcein AM• Membrane-permeable compound is hydrolyzed in live cells to release water soluble green fluorescent dye
• Uniform intracellular labeling
• Dead cells don't retain dye, for true endpoint viability assay
ViaFluor® SE Dyes• Membrane-permeable compound is hydrolyzed in live cells to release amine-reactive dye
• Covalent, fixable intracellular labeling
• Choice of blue or green fluorescence
Lucifer Yellow Derivatives• Widely used green fluorescent tracers for neuronal morphology and gap junction studies
• Fixable Lucifer Yellow CH and Lucifer Yellow Cadaverine
• Lucifer Yellow Cadaverin Biotin-X for secondary detection with streptavidin
Hydroxystilbamidine (equivalent to Fluoro-Gold™)• Widely used UV-excitable green fluorescent retrograde neuronal tracer
• Available in solid and 4% solution in water
Biotin Derivatives• Biotin-based tracers for secondary detection with streptavidin
CF® Dye Biotin• Biotin conjugates of our bright & photostable CF® dyes
CF® Dye Biocytin• Aldehyde-fixable biocytin conjugated with bright & photostable CF® dyes.

Membrane Potential Dyes

Slow-Response Membrane Potential Dyes

Translational (slow-response) voltage-sensitive dyes change membrane distribution with shifts in membrane potential. DiBAC4(3) shows enhanced fluorescence upon depolarization and, while slower than styryl dyes like ANEPPS, offers a larger signal change. DiOC2(3) is used in bacteria; it forms red fluorescent aggregates as membrane potential increases, enabling ratiometric measurements. DiOC5(3) and DiOC6(3) are widely used carbocyanine dyes for membrane potential. TMRE and TMRM allow quantitative assessment of overall and mitochondrial membrane potential.

DiO/DPA Membrane Potential Kit

The membrane localization of the fluorescence quencher dipicrylamine (DPA) is a function of the polarity and magnitude of membrane potential. The DiO/DPA system detects cytoplasmic membrane potential changes using the principle of fluorescence resonance energy transfer (FRET). The green fluorescent membrane dye DiO is a “stationary” FRET donor while DPA acts as a mobile FRET acceptor, resulting in a membrane potential-dependent quenching of fluorescence by FRET. The DiO/DPA system has been reported to produce a fluorescence signal change of >56% in HEK-293 cells and >25% in neuronal cultures and brain slices per 100 mV membrane potential change.

Fast-Response Membrane Potential Dyes

Fast-response voltage-sensitive styryl dyes change fluorescence intensity (~2–10% per 100 mV) and can show spectral shifts for ratiometric measurements. They are used to monitor electrical activity in neural and cardiac cells. Di-4-ANNEPS and Di-8-ANNEPS are used in cardiomyocyte studies; Di-8-ANNEPS is more photostable, membrane-retentive, photostable and less phototoxic than Di-4-ANNEPS. Di-2-ANEPEQ (also known as JPW 1114) is water-soluble and typically microinjected. Di-8/12-ANEPPQ are more hydrophobic and used for retrograde labeling. RH-series dyes (e.g., RH237, RH421) are used for neuronal imaging; RH421 shows >20% signal change per 100 mV on neuroblastoma cells. Physiological effects vary, for example RH414 causes arterial constriction while RH795 does not.

Slow-Responding Membrane Potential Dyes

ProductEx/EmCatalog number
DiBAC4(3)493/516 nm61011
DiOC2(3)482/497 nm70008
DiOC5(3)482/497 nm70007
DiOC6(3)484/501 nm70009
TMRE, 2 mM in DMSO549/574 nm70005
TMRE549/574 nm70016
TMRM548/573 nm70017

Fast-Responding Membrane Potential Dyes

ProductEx/EmCatalog number
Di-4-ANEPPS496/705 nm161010
Di-8-ANEPPS498/713 nm161012
Di-2-ANEPEQ (JPW 1114)See Note 261013
Di-8-ANEPPQ61014
Di-12-ANEPPQ61015
RH237528/782 nm61018
RH414532/706 nm61016
RH421515/704 nm61017
RH795530/712 nm61019
DiO/DPA Membrane Potential Kit484/501 nm30037
1Ex/Em is shown for dyes in methanol. In cell membranes, spectra of styryl dyes are typically blue-shifted by as much as 20 nm for absorption/excitation and 80 nm for emission.
2Spectrally similar to the ANEPPS dyes.

Amyloid Stains & Neurodegeneration Dyes

PathoGreen™ Stain for Neurodegeneration

PathoGreen™ is an anionic green fluorescent dye functionally similar to Fluoro-Jade® dyes. These dyes stain degenerating neurons and their processes in brain sections and cell culture. The mechanism of staining by this class of dyes has not been determined, but the negatively charged dyes may bind to positively charged polyamines generated in dying neurons.

We also offer a wide selection of cell viability and apoptosis assays.

Figure 5. Section of mouse hippocampus stained with PathoGreen™. Degenerating neurons are stained green.

Amyloid Stains

Congo Red is commonly used to detect amyloid protein aggregates associated with Alzheimer’s disease, Bovine Spongiform Encephalopathy, and related diseases. The staining can be detected by either colorimetric or fluorescence imaging (Ex/Em 497/614 nm).

DCDAPH is a far-red fluorescent probe (Ex/Em 597/665 nm) with high affinity (Kd=27 nM) to Aβ1-42 aggregates. It has been used for fluorescent staining of brain sections, as well as in vivo small animal near-IR imaging.

Thioflavin T is a cell-permeant benzothiazole dye that exhibits enhanced fluorescence (Ex/Em 450/482 nm) upon binding to amyloid fibrils. Thioflavin T has also been used in histology and for protein characterization.

Amyloid & Neurodegeneration Stains

FAQs

Most of our products are stable at room temperature for many days, so in all likelihood the product will still work just fine. To be on the safe side, we recommend performing a small scale positive control experiment to confirm that the product still works for your application before processing a large number of samples or precious samples.

One exception that we are aware of is GelGreen®, which is more sensitive to light exposure than most of our other fluorescent dyes. If GelGreen is exposed to ambient light for a prolonged period of time (days to weeks), its color will change from dark orange to brick red. If this occurs, the GelGreen will no longer work for gel staining.

 

Bioscience kits
The guaranteed shelf life from date of receipt for bioscience kits is listed on the product information sheet. Some kits have an expiration date printed on the kit box label, this is the guaranteed shelf life date calculated from the day that the product shipped from our facility. Kits often are functional for significantly longer than the guaranteed shelf life. If you have an older kit in storage that you wish to use, we recommend performing a small scale positive control experiment to confirm that the kit still works for your application before processing a large number of samples or precious samples.

Antibodies and other conjugates
The guaranteed shelf life from date of receipt for antibodies and conjugates is listed on the product information sheet. Antibodies and other conjugates often are functional for significantly longer than the guaranteed shelf life. If you have an older conjugate in storage that you wish to use, we recommend performing a small scale positive control experiment to confirm that the product still works for your application before processing a large number of samples or precious samples.

For lyophilized antibodies, we recommend reconstituting the antibody with glycerol and antimicrobial preservative like sodium azide for the longest shelf life (note that sodium azide is not compatible with HRP-conjugates).

Chemicals, dyes, and gel stains
Biotium guarantees the stability of chemicals, dyes, and gel stains for at least a year from the date you receive the product. However, the majority of these products are highly stable for many years, as long as they are stored as recommended. Storage conditions can be found on the product information sheet or product safety and data sheet, material safety data sheet, and on the product label. Fluorescent compounds should be protected from light for long term storage.

If you have a Biotium compound that has been in storage for longer than one year that you wish to use, we recommend performing a small scale positive control experiment to confirm that the compound still works for your application before processing a large number of samples or precious samples.

Expiration date based on date of manufacture (DOM)
If your institution requires you to document expiration date based on date of manufacture for reagents, please contact techsupport@biotium.com for assistance.

Chemical products with special stability considerations:

Esters

Ester compounds include the following:

  • Succinimidyl esters (SE, also known as NHS esters), such as our amine-reactive dyes
  • Acetoxymethyl esters (AM esters), such as our membrane-permeable ion indicator dyes
  • Diacetate-modified dyes, like ViaFluor™ 405, CFDA, and CFDA-SE cell viability/cell proliferation dyes

Ester dyes are stable in solid form as long as they are protected from light and moisture. Esters are not stable in aqueous solution. Concentrated stock solutions should be prepared in anhydrous DMSO (see Biotium catalog no. 90082). Stock solutions in anhydrous DMSO can be stored desiccated at -20°C for one month or longer. Esters should be diluted in aqueous solution immediately before use. Succinimidyl esters (SE) should be dissolved in a solution that is free of amine-containing compounds like Tris, glycine, or protein, which will react with the SE functional group. AM esters and diacetate compounds should be dissolved in a solution that is free of serum, because serum could contain esterases that would hydrolyze the compound.

A note on CF® Dye succinimidyl ester stability

Succinimidyl esters (SE) are generally susceptible to hydrolysis, which can result in lower labeling efficiency. Many commercially available fluorescent dyes used for life science research are heavily sulfonated dyes which makes them particularly hygroscopic, worsening the hydrolysis problem. In addition, for several commercially available SE reactive dyes, the SE group is derived from an aromatic carboxylic acid, while the SE group in all of Biotium’s CF® Dyes is prepared from an aliphatic carboxylic acid. This structural difference reduces the susceptibility of CF® Dye SE reactive groups to hydrolysis, resulting in relatively stable reactive dyes with consistently higher labeling efficiency compared to other SE derivatives of other fluorescent dyes.

Maleimides, MTS and thiosulfate dyes
Like the succinimidyl ester dyes, these dyes are also susceptible to hydrolysis, although generally to a much lower degree. Thus, for long term storage, anhydrous DMSO is recommended for making stock solutions.

Other reactive dyes
Amines, aminooxy (also known as oxylamine), hydrazide, azide, alkyne, BCN, and tyramide reactive dyes, as well as dye free acids, are generally stable in aqueous solution when stored at -20°C for 6-12 months or longer, as long as no compounds are present that may react with the dye’s functional group. See the product information sheets for specific reactive dyes more information.

Coelenterazines and D-luciferin

Coelenterazines are stable in solid form when stored as recommended; they are not stable in aqueous solution. Concentrated coelenterazine stock solutions (typically 1-100 mg/mL) should be prepared in ethanol or methanol; do not use DMSO or DMF to dissolve coelenterazines, because these solvents will oxidize the compounds. Ethanol or methanol stocks of coelenterazine can be stored at -20°C or below for six months or longer; alcohol stocks may evaporate during storage, so use tightly sealing screw cap vials and wrap the vials with Parafilm for long term storage. Propylene glycol also can be used as a solvent to minimize evaporation. If the solvent evaporates, the coelenterazine will still be present in the vial, so note the volume in the vial prior to storage so that you can adjust the solvent volume to correct for evaporation if needed. Prepare working solutions in aqueous buffers immediately before use. Coelenterazines are stable for up to five hours in aqueous solution.

Aquaphile™ coelenterazines are water soluble formulations of coelenterazines. They are stable in solid form when stored as recommended. Aquaphile™ coelenterazines should be dissolved in aqueous solution immediately before use. They are stable for up to five hours in aqueous solution.

Note that coelenterazines are predominantly yellow solids, but may contain dark red or brown flecks. This does not affect product stability or performance. If your coelenterazine is uniformly brown, then it is oxidized and needs to be replaced.

D-luciferin is stable in solid form and as a concentrated stock solution when stored as recommended; it is not stable at dilute working concentrations in aqueous solution. Prepare concentrated D-luciferin stock solutions (typically 1-100 mg/mL) in water, and store in aliquots at -20°C or below for six months or longer. Prepare working solutions immediately before use.

Some of our products are packaged from a solution followed by solvent evaporation or lyophilization. If the chemical compound is very lightly colored or colorless and in small quantity, it may become thinly coated on the wall of the vial, making the vial appear empty. So, before you ask for a replacement, please inspect the vial carefully.

To dissolve lyophilized compounds, simply add the appropriate volume of the recommended solvent to the vial to make the desired concentration stock solution, and swirl or gently vortex to mix. Make sure the solvent comes in contact with the inside walls of the vial to fully recover the product.

Note that blue fluorescent dyes such as CFTM350, CFTM405M, and CFTM405S are colorless or very pale yellow, and may be difficult to see.

View more FAQs
Can't find your answer?
Talk to an Expert